Team Inspiration

2020 INCOSE SD Mini-Conference 5 December 2020

Copyright © by Ashiria Goel, Colin Szeto, Mabel Szeto, and Rishi Veerepalli All Rights Reserved Permission granted to INCOSE to record, publish, and use

Competitive Edge of the 2020 RoboSub World Champion Team

Ashiria Goel, Colin Szeto, Mabel Szeto, Rishi Veerepalli

Agenda

- About RoboSub
- About Team Inspiration
 - Team History
 - Team Inspiration News
- Systems Engineering during 2020 season
 - Virtual Competition
 - Competition Results
 - Our Robot
 - Covid-19 Adaptations
 - Digital Engineering
- Our Learnings
 - What Made Our Team Excel
 - Global Changes In Systems Engineering
 - Attributes of a Successful Systems Engineer
- Questions

RoboSub Info and Venue

"RoboSub is an international student competition. Student teams from around the world design and build robotic submarines, otherwise known as Autonomous Underwater Vehicles (AUV). The behaviors demonstrated by these experimental AUVs mimics those of real-world systems, currently deployed around the world for underwater exploration, seafloor mapping, and sonar localization, amongst many others." - RoboNation

2019 images

2020 is the 23rd annual RoboSub competition

Team Inspiration History

2011 - FIRST Lego League (FLL)

2020 - RoboSub 12 middle/high schoolers

Systems engineering is the basis of our robotics journey

Our Team in the News

Video provided by: CBS 8

Getting the message out to the public

2020 Virtual Competition Criteria

Technical Paper

- Under 5 pages
- Should showcase the maturity of the system and team

Team Video

- Under 15 min
- Replacement for the onsite judging presentation

Team Website

- Should supplement the video and technical paper

Criteria drive our team objectives

Competition Results

Overall Standings

1st Place:	<u>Team Inspiration</u>
2nd Place:	<u>Si Se Puede Foundation & Arizona State University</u>
3rd Place:	Tecnológico de Monterrey
4th Place:	San Diego State University
5th Place:	<u>Carnegie Mellon University</u>
6th Place:	<u>University of Alberta</u>
Video Stan	dings
1st Place:	Tecnológico de Monterrey
2nd Place:	<u>Team Inspiration</u>
3rd Place:	Indian Institute of Technology Bombay
4th Place:	<u>Si Se Puede Foundation & Arizona State University</u>
5th Place:	<u>San Diego State University</u>
Technical De	esign Report Standings
1st Place:	<u>Team Inspiration</u>
2nd Place:	<u>California Institute of Technology</u>
3rd Place:	Si Se Puede Foundation & Arizona State University
4th Place:	<u>Duke University</u>
5th Place:	The Ohio State University
Website Sta	ndings
1st Place:	<u>Team Inspiration</u>
2nd Place:	Si Se Puede Foundation & Arizona State University

- 3rd Place: Amador Valley High School
- 4th Place: Tecnológico de Monterrey
- 5th Place: École de Technologie Supérieure

33 TEAMS

Ain Shams University	Gonzaga University
Amador Valley High School	Indian Institute of Technology
Arizona State University	Kasetsart University
Beaver Country Day School	Kennesaw State University
California Institute of Technology	National University of Singapore
California State University, Los Angeles	North Carolina State University
Carnegie Mellon University	Oregon Institute of Technology
Duke University	Robotics Association at Embry-
École de Technologie Supérieure	San Diego City College
Federal University of Rio de Janeiro	San Diego State University
Georgia Institute of Technology	Si Se Puede Foundation & Arizona
-	

iga (University	
Ins	titute of Technology	à

	e ream inspiration
Bombay	Tecnológico de Monterrey
	Texas A&M University
	The Ohio State University
re	University of Alberta
,	University of California at Riversio
1	University of California, San Diego
Riddle	University of Colorado at Boulder
	University of Colorado at Boulder

Team Incoirction

Vortex NTNU

uede Foundation & Arizona State University 🔘 Wrocław University of Science and Technology

Being requirement-driven enabled us to win

at Riverside

, San Diego

Our 2020 Robots

Dual robot strategies maximized our game potential

COVID-19 Adaptations

Assigned digital nomad jobs, distributed resources for development

External Collaboration

Digital development enabled us to collaborate remotely. Surprisingly, we had more collaboration with professionals due to COVID-19.

00000

0

O DESIGN PCB

000

Æ

Θ€

00

00

Inspiration

9V 51

Ps

Parallel Prototyping

Independent team members' concepts

Navigation Software Architecture

Localization/perception programs interpret data from hardware, and produce information about env. or location

Sensor fusion program combines localization programs' data to produce estimate of location and env.

Sent to thruster cmd process which controls motors based on information provided by the sensor fusion program

Clear Architecture and Flow Diagrams

Virtual Simulation

A software in the loop (SITL) 6DoF simulation that simulates our flight controller runs in an Ubuntu virtual machine. SITL is linked with Gazebo to provide a 3D model/visualization. Gazebo also provides information like coordinates/heading which we can use to verify simulation results. We model sensor inputs using the position and velocity information Gazebo gives us.

Utilizing Gazebo and ArduSub software-in-the-loop simulation in place of in-water testing

RoboSub Motion Conceptualization

Visualizing the movement and communication to others

Hydrophones

- Three hydrophones used around Græy in the vertices of the largest possible equilateral triangle that fit in our design
- Sampling at 200 kHz at a 12-bit resolution allowing for precise signal processing
- The signal processing takes place on single custom designed PCB which offloads the amplification, noise isolation, and frequency selection to a hardware based solution, freeing resources on the processor.
- The algorithm takes into account the Differences in the Time of Arrivals (DTOA) of each signal to calculate the approximate heading of the pinger.

PCB Designs

V1

V2

V2.1

Everything is developed in iterations

In-pool Testing

What Made Our Team Excel

- Focus on the competition guidelines
- Competitor analysis and research
- Hard work and dedication
- Communication
- Iteration and parallel prototyping
- Trade studies
- Attention to detail
- Rigor in documentation
- Utilizing mentors and vendors
- Team work
- Availability
- Solution oriented

-		

Attributes	Weight	Dual Enclosure		Single Long Hull (8in)		Box Enclosure		Configuration (Short 6in)		Dual Hull Connected	
	1-5	Rank 1 - 5	weighted	Rank 1 - 5	weighted	Rank 1 - 5	weighted	Rank 1 - 5	weighted	Rank 1 - 5	weighted
Capacity	4	4	16	4	16	5 4	16	5 2	8	5	20
Water displacement(size)	0	2	0	2) 3	s c	. 4	. c	4	
Min Ports?	10	1	10	1	10) () ()	1 10	• c	0		10 10
Ports	3	5	15	2		5 3	5 9		1 3	4	. 13
Cost	3	3	9	4	12	2	1 3	5	5 15		
Ease of Maintenance(ease to open up and debug sensors etc.)	4	3	12	2	. 6		5 20	3	12	5	. 20
Ease of Fabrication (if we can make it in the garage with the tools we have)	5	4	20	4	. 20	,	1 5		5 25		
Convience (what we can do now)	3	2	6	4	. 12	2 4	5 15		5 15	3	
Room for expansion	4	4	16	3	1	2	3 12		4	3	1
Total Points		28	104	26	9	5 21	5 90	26	82	27	9
More points = Better											

Team Inspiration

The Design of Team Inspiration's 2020 AUVs

Colm State (nam lead), Ashira Goel (deputy), Ashika Palacharia, Adiya Mavukakar, Sharin Nanda, Raina Shapur, Pahel Surrutaran, Mabel Sano, Nasa Ing, Raini Venergalin, and Enh Vij bydrophones to our previous vision and sonar Abstract—Team Inspiration focuseds on sensors. perpetuality learning and lapproving, and/le set

out to improve our sub 3 not application and expand our mission capability. Our second year team of 12 middle and high schoolers designed our 2 AUVs for the 2020 RoboSub competition, Green of the image in relation to the AUV: and image

and Orange (our AUV from last year modified identification/recognition. CV is used to identify to fit this year's challenge). Through designing freey, we learned how to use Robot Operating

We continue to use Commercial Off The task will be counted and each run is ended only Shelf (COTS) products where feasible and after both subs have surfaced. We can gain point incorporate custom hardware/software as needed. through the intersub communication task. We

nsion by

increased and the

only the highest points earned at each attempted

determined the benefits of two subs far outweigh

subs

to partner with educators to create a sub under \$500 for STEM education. We used emulated Orange's simplicitye and modular construction to when designdesigning

our team last year, so we kent these processes

We did not have interprocess communication last

Because we are solution oriented COVID is not a blocker

Global Changes In Systems Engineering

- Everything is accelerating
- Scrum allows to meet the demand
- Systems Engineering and planning becomes paramount
- Online collaborative environments allows designers and collaborators to see the big picture
- In person environments are not necessary to learn and collaborate

Digitization demands speed, accuracy, documentation, and configuration control

Attributes of a Successful Systems Engineer

- Be curious
- Requirement driven
- Use the systems engineering processes
- Plan out system architecture
- Observes and adapts
- Be flexible
- Test, test, test
- See both the big and small picture
- Trust but verify
- Ensure every task moves the team toward the end goal

Ability to focus on the big picture and adapt accordingly. System Thinking is Key.

Website: <u>https://team11128.wixsite.com/main</u> Email: <u>11128inspiration@gmail.com</u>

Græy

Computer Vision

This is for the "Gate" aka Choose Your Side, "Buoys" aka Make the Grade, "Bin" aka Collecting, "Torpedoes" aka Survive the Shootout, and "Octagon" aka Cash or Smash missions.

Sonar -

This is for the "Buoys" aka Make the Grade and "Torpedoes" aka Survive the Shootout missions.

Gripper-

This is for the "Bin" aka Collecting and "Octagon" aka Cash or Smash missions.

- Navigation

We used several sensor inputs and used ROS as our interprocess communication software to integrate the programs.

– Modem

This is for the intersub comunication mission.

DVL

This is for navigating to every mission.

- Hydrophones

This is for the "Octagon" aka Cash or Smash and "Torpedoes" aka Survive the Shootout mis<u>sions.</u>