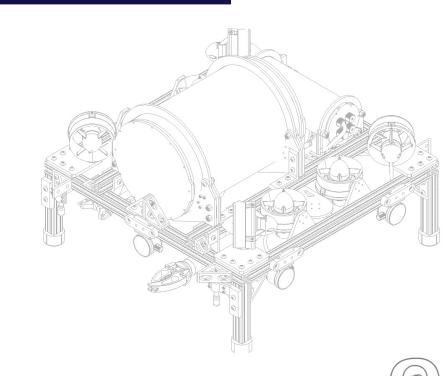
Team Inspiration

Marine Technology Society 22 April 2021

Our RoboSub Journey

Ashiria Goel, Colin Szeto, Mabel Szeto, Rishi Veerepalli and Eesh Vij



Opportunity runs deep™

Agenda

- About Team Inspiration
 - Team History
- About RoboSub
 - Virtual Competition
 - Competition Results
 - Our Robot
 - Systems engineering
- Details of our system
 - o 3D Models
 - o PCB
 - Navigation
 - Testing and simulation
- Acknowledgements and Keynotes
- Questions

Team Inspiration History

2020 - RoboSub Champion 12 middle/high schoolers

RoboSub Info and Venue

"RoboSub is an international student competition. Student teams from around the world design and build robotic submarines, otherwise known as Autonomous Underwater Vehicles (AUV). The behaviors demonstrated by these experimental AUVs mimics those of real-world systems, currently deployed around the world for underwater exploration, seafloor mapping, and sonar localization, amongst many others."

RoboSub official website

2019 images

2020 Virtual Competition Criteria

Technical Paper

- Under 5 pages
- Should showcase the maturity of the system and team

Team Video

- Under 15 min
- Replacement for the onsite judging presentation

Team Website

Should supplement the video and technical paper

Competition Results

Overall Standings

1st Place: Team Inspiration

2nd Place: Si Se Puede Foundation & Arizona State University

3rd Place: Tecnológico de Monterrev 4th Place: San Diego State University 5th Place: Carnegie Mellon University

Video Standings

1st Place: Tecnológico de Monterrev

2nd Place: Team Inspiration

3rd Place: Indian Institute of Technology Bombay

4th Place: Si Se Puede Foundation & Arizona State University

Technical Design Report Standings

1st Place: Team Inspiration

2nd Place: California Institute of Technology

3rd Place: Si Se Puede Foundation & Arizona State University

4th Place: **Duke University**

Website Standings

1st Place: Team Inspiration

2nd Place: Si Se Puede Foundation & Arizona State University

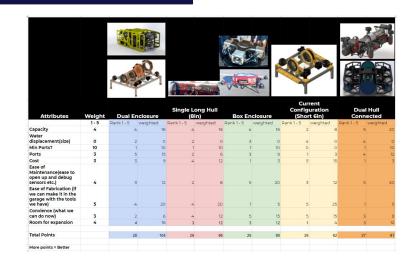
Amador Vallev High School 3rd Place: 4th Place: Tecnológico de Monterrey

33 TEAMS

- Ain Shams University
- Amador Valley High School
- Arizona State University
- California Institute of Technology
- Carnegie Mellon University

Beaver Country Day School

- Duke University
- École de Technologie Supérieure
- Federal University of Rio de Janeiro
- Georgia Institute of Technology


- Gonzaga University
- Indian Institute of Technology Bombay
- Kasetsart University
- Kennesaw State University
- National University of Singapore
- California State University, Los Angeles
 North Carolina State University
 - Oregon Institute of Technology
 - Robotics Association at Embry-Riddle
 - San Diego City College
 - San Diego State University

- Team Inspiration
- Tecnológico de Monterrey
- Texas A&M University
- The Ohio State University
- University of Alberta
- University of California at Riverside
- University of California, San Diego
- University of Colorado at Boulder
- University of Colorado at Boulder
- Vortex NTNU
- Si Se Puede Foundation & Arizona State University
 Wrocław University of Science and Technology

What Made Our Team Excel

- Focus on the competition guidelines
- Competitor analysis and research
- Hard work and dedication
- Communication
- Iteration and parallel prototyping
- Trade studies
- Attention to detail
- Rigor in documentation
- Utilizing mentors and vendors
- Team work
- Availability
- Solution oriented

am for redundancy.

le weed-emulated Orange's simplicitye and
lar construction te-when designdesigning.

The design allows easy expansion by
y increasing the cylinder length and

RoboSub Progression

From sea perch to blue rov to orange

Systems Engineering "V" is an Enabler

Self-Awareness Competitor Research, **Industry Survey** System Testing Mission Exploration Subsystem Testing **Planning** Reflection Requirement Development Component Testing **Design Review** Modular & Parallel

Development

Competitors Research & Industry Survey

- Learn from competitors
 - Survey <u>RoboSub</u> teams from last five years
 - Identify equipment usage
 - Identify lessons learned
 - Ask for advice
 - Study their subs
 - Learn from industry professionals
 - Systems engineering process proven at TRW, NASA JPL, Northrop Grumman
 - Marine industry products
 - Interview professional from Scripps Institute of Oceanography

Planning

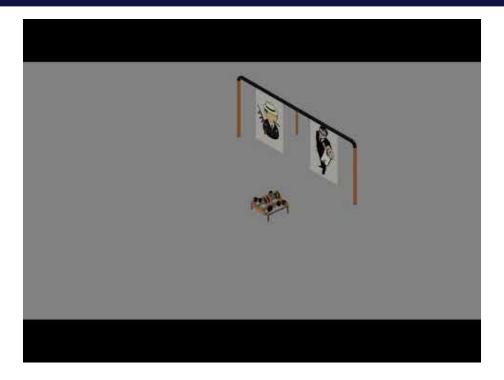
- Draft schedule at Kick-Off schedule focus
- Develop schedule backward from goal with contingency
- Long lead material procurement RoboSub components
- Rapid prototype weekly increments
- Parallel and modular development
- Early testing start from the beginning
- Multiple decision milestones

Week	Agenda	
16-Mar	Kick off – RoboSub team research	
23-Mar	RoboSub team research - refine requirements - assign role	
	Identify/procure long lead items – Select computer –	
30-Mar	prioritize requirements	
6-Apr	Connect benchtop vehicle – test component	
13-Apr	Identify all equipment	
20-Apr	program remote control	
27-Apr	put together simple underwater vehicle – first prototype	
4-May	Experiment first prototype in water	
11-May	Progam autonomous	
18-May	Experiment with IMU and depth sensor	
25-May	Experiment with computer vision	
1-Jun	Draft technical paper	
8-Jun	Review draft – Experiment with second prototype	
15-Jun	Final technical paper	
22-Jun	Submit technical paper	
29-Jun	Experiment sonar	
6-Jul	Experiment with final vehicle	
	Data correlation with vision input	
13-Jul	Pre-qualification	
20-Jul	Refine autonomous programming	
27-Jul	Pack robot for competition	
Jul 29 - Aug 4	Competition at NIWC PAC TRANSDEC	

Requirement Development

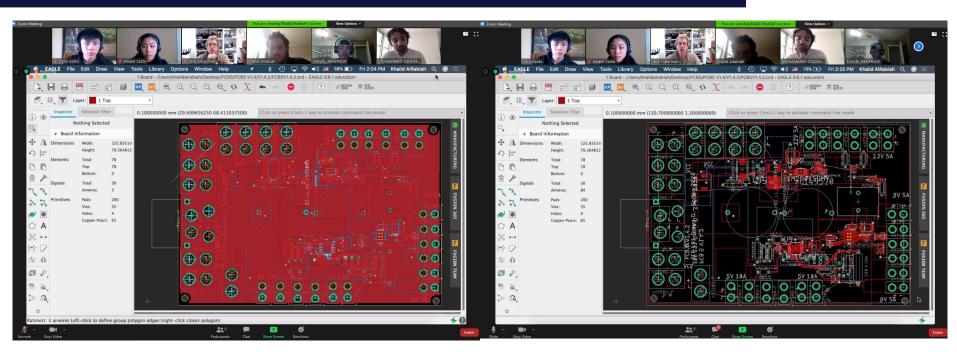
- Understand systems requirements
 - Flow down to mechanical, software, test, operation
- Understand interface
 - o HW-HW, SW-SW, HW-SW, user
- Prioritize requirements

30%	Team capability		
25%	Schedule		
20%	Cost		
10%	Risk		
15%	Performance		
100% Weighted	Criteria		


Understand team capability is a major risk mitigation

Self-Awareness (2019)

- Team members capabilities and resource
 - Printed circuit card development (knowledge, resource & schedule)
 - FPGA (knowledge, resource & schedule)
 - Artificial Intelligent (knowledge & schedule)
 - Neural network (knowledge & schedule)
 - Machine milling part (cost)
 - Complex sensors (cost & complexity)
 - o General robotics knowledge
 - o Integration
 - Programming
 - o Garage lab and pool
 - o Systems engineering
 - o Teamwork
 - Dedication
 - Passion and drive
 - o Mentors



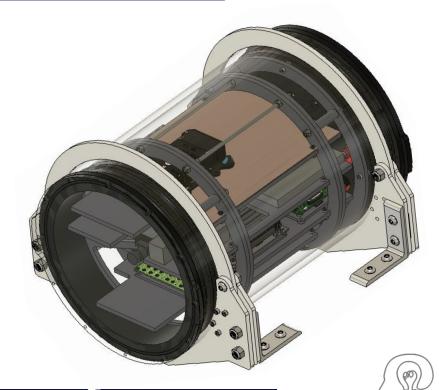
RoboSub Motion Conceptualization

External Collaboration

Digital development enabled us to collaborate remotely. Surprisingly, we had more collaboration with professionals due to COVID-19.

Design Review

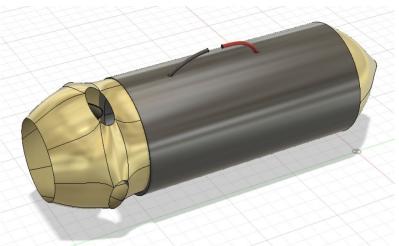
- Design review is critical to align the team direction and awareness
- Trade study allows better decision making
- Rapid prototyping allows concept validation
- Weekly status review provides valuable feedback


Parallel Prototyping

- Modular development allows team members to tackle multiple payload investigation simultaneously
- Parallel breadboard, simple vehicle, remote control vehicle testing allow timely design concept verification to identify development shortfall
 - Lessons learned are incorporated into the final vehicle development
- CAD and 3D printing allow quick modeling and testing of the design

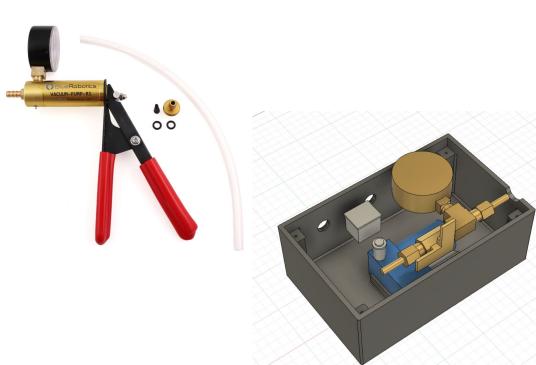
Parallel Prototyping

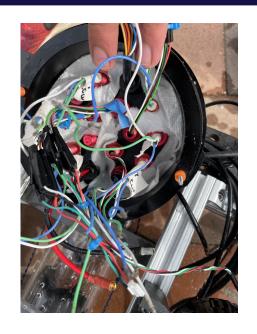
Electronics Enclosure



Torpedos

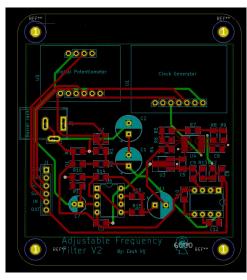
Material Evolution




Vacuum Pump

Using Wet Connectors

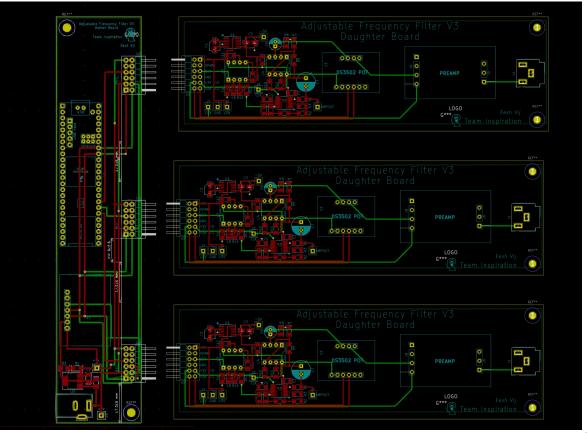
Hydrophones

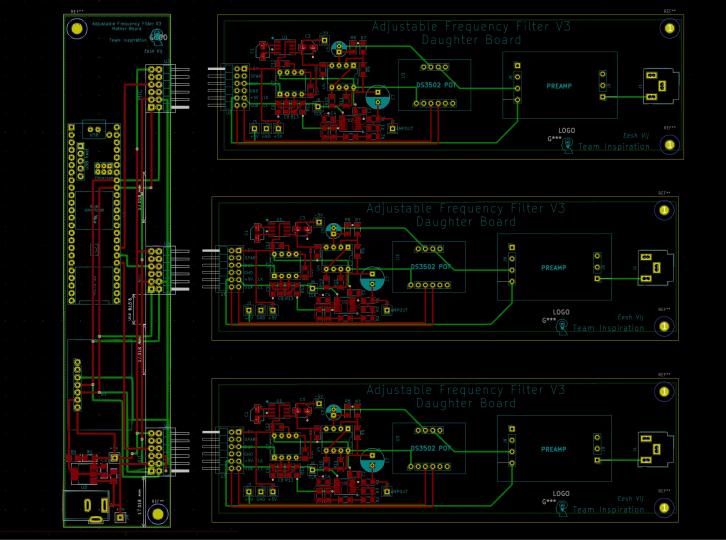

- Three hydrophones used around Græy in the vertices of the largest possible equilateral triangle that fit in our design
- Sampling at 200 kHz at a 12-bit resolution allowing for precise signal processing
- The signal processing takes place on single custom designed PCB which offloads the amplification, noise isolation, and frequency selection to a hardware based solution, freeing resources on the processor.
- The algorithm takes into account the Differences in the Time of Arrivals (DTOA) of each signal to calculate the approximate heading of the pinger.

PCB Designs for Hydrophones

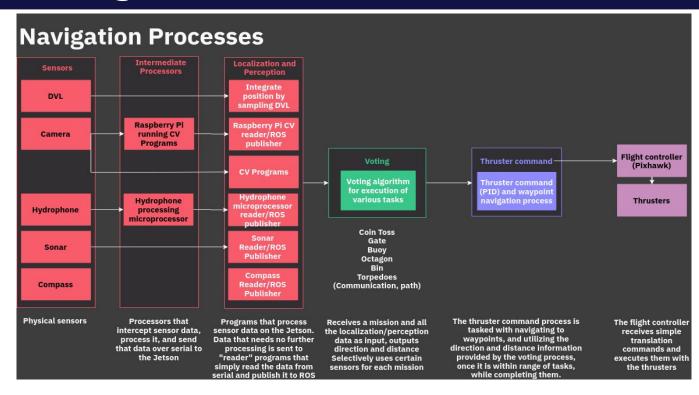
V1

V2

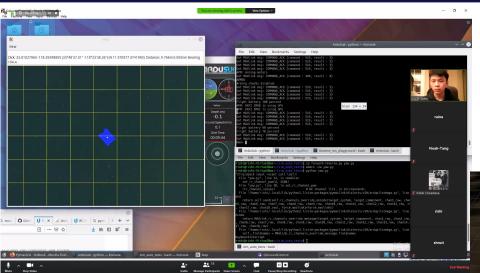

V2.1


PCB Designs

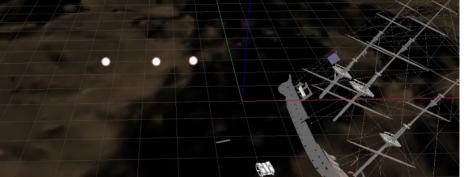
V3


- Low-Cost
- Maintainable
- Ease of use
- Future Expandability

Navigation Software Architecture



Localization/perception programs interpret data from hardware, and produce information about env. or location


Sensor fusion program combines localization programs' data to produce estimate of location and env.

Sent to thruster cmd process which controls motors based on information provided by the sensor fusion program

Virtual Simulation

A software in the loop (SITL) 6DoF simulation that simulates our flight controller runs in an Ubuntu virtual machine. SITL is linked with Gazebo to provide a 3D model/visualization. Gazebo also provides information like coordinates/heading which we can use to verify simulation results. We model sensor inputs using the position and velocity information Gazebo gives us.

Utilizing Gazebo and ArduSub software-in-the-loop simulation in place of in-water testing

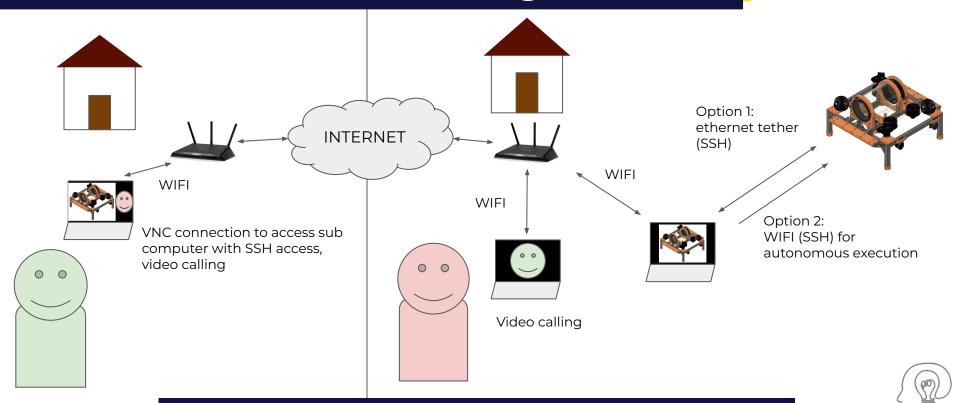
Testing, Testing, and More Testing

Breadboard testing starts in the second week is key to shorten the development life cycle

Remote-control vehicle testing allows observation to incorporate features into the final design

Incremental testing allows rapid lessons learned

Early subsystem and system level testing allows us to improve the design and development weekly similar to the agile process



Network of Online Testing

Remote configuration, control & operation

In-pool Testing

Keynotes

Know the mission – understand the problem to solve

Keep It Simple Silly

Passion

Reliability

Teach

Fail quickly

Teamwork

Acknowledgement

- Team Inspiration Members
 - Ashiria Goel (Team Captain), Eesh Vij (Deputy Captain), Rishi Veerepalli (Deputy Captain), Aditya Mavalankar, Ashika Palacharla, Claire Zhao, Colin Szeto, Eric Silberman, Isabelle Gunawan, Mabel Szeto, Noah Tang, Pahel Srivastava, Raina Shapur, Shreyas Rangan, and Shruti Natala

- o Alex Szeto, Jack Silberman
- Mentors
 - Amit Goel, Brian Liu, Dave Warner, Eric Lo, Eugene Kim, Kenzo Tomitaka, Kris Chopper, Kunal Srivastava, Pamela Cosman, Pat McLaughlin, Phil Yao, Michael Arnstein, Valibabu Saladi, and Venkat Rangan
- Sponsors/supporters

Supports

Mentors

Sensors - beacon, FOG, hydrophone

Tooling - CNC, laser cutter, ...

Software - simulator, ...

Test equipment -

Funding - Travel

Questions?

Website: https://team11128.wixsite.com/main

Email: 11128inspiration@gmail.com

Græy

Computer Vision

This is for the "Gate" aka Choose Your Side, "Buoys" aka Make the Grade, "Bin" aka Collecting, "Torpedoes" aka Survive the Shootout, and "Octagon" aka Cash or Smash missions.

Sonar -

This is for the "Buoys" aka Make the Grade and "Torpedoes" aka Survive the Shootout missions.

Gripper

This is for the "Bin" aka Collecting and "Octagon" aka Cash or Smash missions.

Navigation

We used several sensor inputs and used ROS as our interprocess communication software to integrate the programs.

Modem

This is for the intersub comunication mission.

DVL

This is for navigating to every mission.

Hydrophones

This is for the "Octagon" aka Cash or Smash and "Torpedoes" aka Survive the Shootout missions.